

Welcome to Quire’s documentation!

Quire is a configuration parser-generator for the C language with the following
most prominent features:

	Structured Yaml [http://yaml.org] configuration files

	Generated header with C structures with apropriate typing

	Rich set of tools for end users (includes, yaml anchors, variables...)

Sources: http://github.com/tailhook/quire

Contents:

	Quire Tutorial
	Minimal Config

	Adding Useful Stuff

	Nested Structures

	Command-line Arguments

	Arrays

	Mappings

	Custom Types

	Developer Guide
	Build Process

	Variable Types

	Special Keys

	Custom Types

	C Fields

	User Guide
	Yaml Cheat Sheet

	Quire Tricks

	Variables

	Templates

	Includes

	Merging Mappings

	Merging Sequences

Quire Tutorial

This tutorial assumes that reader is proficient with C and build tools,
and have setup building as described in Developer Guide.

It is also assumed that you are familiar with YAML [http://yaml.org]. There is quick
cheat sheet in user guide.

Minimal Config

Let’s make minimal configuration definition file, which is by coincidence is
also a YAML file. By convention it’s called config.yaml:

__meta__:
 program-name: frog
 default-config: /etc/frog.yaml
 description: The test program that is called frog just because it
 rhymes with prog (i.e. abbreviated "program")

Now let’s build them to see what we have (we use quire-tool like it’s
installed in the system, you can use any build tool
to build the files):

quire-tool --source config.yaml --c-header config.h --c-header config.c

Let’s take a look at what we have in config.h:

/* Main configuration structure */
struct cfg_main {
 qu_config_head head;
};

/* API */
int cfg_load(struct cfg_main *cfg, int argc, char **argv);
void cfg_free(struct cfg_main *cfg);

Disclaimer

Generated code pieces are shown stripped and reformatted for teaching
purposes

We don’t see anything useful here yet. But let’s make it work anyway. We need
a main.c:

#include "config.h"

static void run_program(struct cfg_main *cfg) {
 printf("The test program is doing nothing right now!\n");
}

int main(int argc, char **argv) {
 int rc;
 struct cfg_main cfg;

 rc = cfg_load(&cfg, argc, argv);
 if(rc == 0) {
 run_program(&cfg);
 }
 cfg_free(&cfg);

 if(rc > 0) {
 /* rc > 0 means we had some configuration error */
 return rc;
 } else {
 /* rc == 0 means we have run successfully */
 /* rc < 0 means we've done some config action successfully */
 return 0;
 }
}

As you can see there is a tiny bit of boilerplate with handling error codes
and freeing memory. Let’s build it:

gcc main.c config.c -o frog -lquire -g

Let’s see what batteries we have out of the box:

$./prog
Error parsing file /etc/frog.yaml: No such file or directory

Hm, we don’t have a configuration file, yet. And we don’t want to put
configuration into /etc yet. Let’s see what we can do:

$./prog --help
Usage:
 frog [-c CONFIG_PATH] [options]

The test program that is called frog just because it rhymes with prog (i.e.
abbreviated "program")

Configuration Options:
 -h,--help Print this help
 -c,--config PATH Configuration file name [default: /etc/frog.yaml]
 -D,--config-var NAME=VALUE
 Set value of configuration variable NAME to VALUE
 -C,--config-check
 Check configuration and exit
 -P Print configuration after reading, then exit. The
 configuration printed by this option includes values
 overriden from command-line. Double flag `-PP` prints
 comments.
 --config-print TYPE
 Print configuration file after reading. TYPE maybe
 "current", "details", "example", "all", "full"

You can change path to configuration file, you can play with configuration
checking and printing, you can put some variables into configuration (more
below). And you get all of this for free.

So to run the command now, execute:

$ touch frog.yaml
$./frog -c frog.yaml
The test program is doing nothing right now!

Let’s make it easier to test by picking up configuration file from current
directory:

__meta__:
 ...
 default-config: frog.yaml
 ...

$./frog
The test program is doing nothing right now!

Adding Useful Stuff

Let’s add some integer knob to our config:

jumps: !Int 3

After building we have the following header:

struct cfg_main {
 qu_config_head head;
 long jumps;
};

And we can now make advantage of this variable:

void run_program(struct cfg_main *cfg) {
 int i;
 for(i = 0; i < cfg->jumps; ++i) {
 printf("jump\n");
 }
}

Let’s run and play with it a little bit:

$./frog
jump
jump
jump
$ echo "jumps: 4" > frog.yaml
$./frog
jump
jump
jump
jump

Note: I’m editing the file by shell command. It’s probably too freaky way to
do that. You can just edit the file, and see how changes are reflected.

The tutorial gives you an overview of what quire is able to parse and generate,
for full list of types supported see Developer Guide.

Nested Structures

Now the interesting begins. You can make hierarchical config, configuration
sections of arbitrary depth:

jumping:
 number: !Int 3
 distance: !Float 1

Yields:

struct cfg_main {
 qu_config_head head;
 struct {
 long number;
 double distance;
 } jumping;
};

In config it looks like:

jumping:
 number: 5
 distance: 2

Note

The presence of nested structures in quire doesn’t mean that nesting too
deep is encouraged. Probably the example above is better written as:

jumping-number: !Int 3
jumping-distance: !Float 1

Particularly, flat structure is more convenient for
merging maps. So use nested structures sparingly.

Command-line Arguments

Many values can be controlled from the command-line. Let’s return to the
simpler example:

jumps: !Int 3

Command-line is enabled easily. First we should reformat our declaration, to
equivalent one with mapping syntax:

jumps: !Int
 default: 3

Now we can add a command-line option:

jumps: !Int
 default: 3
 command-line: [-j, --jumps]

Let’s see:

$./frog --help
Usage:
 frog [-c CONFIG_PATH] [options]

The test program that is called frog just because it rhymes with prog (i.e.
abbreviated "program")

Configuration Options:
 -h,--help Print this help
 -c,--config PATH Configuration file name [default: /etc/frog.yaml]
 -D,--config-var NAME=VALUE
 Set value of configuration variable NAME to VALUE
 -C,--config-check
 Check configuration and exit
 -P Print configuration after reading, then exit. The
 configuration printed by this option includes values
 overriden from command-line. Double flag `-PP` prints
 comments.
 --config-print TYPE
 Print configuration file after reading. TYPE maybe
 "current", "details", "example", "all", "full"

Options:
 -j,--jumps INT Set "jumps"
$./frog
jump
jump
jump
$./frog -j 1
jump
$./frog --jumps=2
jump
jump
$./frog --ju 1
jump

For integer types there are increment and decrement arguments:

jumps: !Int
 default: 3
 command-line: [-j, --jumps]
 command-line-incr: --jump-incr
 command-line-decr: [-J,--jump-decr]

This works as following:

$./frog
jump
jump
jump
$./frog --jump-decr
jump
jump
$./frog -JJ
jump
$./frog -JJJ
$./frog --jump
Option error "--jump": Ambiguous option abbreviation

Note

Making command-line arguments is easy. However, too many command-line
options makes --help output too long. There is another mechanism to
expose configuration variables to the command-line:
variables. Variables in quire are even more powerful, but
somewhat less easy to use. At the end of the day, declare command-line
arguments for options that either useful for almost every user, or
should only be specified in the command-line.

Arrays

So far we have only declared simple options, that every configuration library,
supports. But here is where the power of the quire comes. The arrays are
declared like the following:

sounds: !Array
 element: !String

Here we declared array of strings. Here is how it looks like in C structure:

struct cfg_a_str {
 struct cfg_a_str *next;
 const char *val;
 int val_len;
};

struct cfg_main {
 qu_config_head head;
 struct cfg_a_str *sounds;
 struct cfg_a_str **sounds_tail;
 int sounds_len;
};

It’s looks too ugly at the first glance. But the rules are:

	The array is a linked list

	The type of list element is named cfg_a_TYPENAME

	The head of the linked list is named as variable in yaml

	The tail may be ignored unless you want to insert another element

	There is _len-suffixed element for the number of elements in array

	The element of linked list is named val (suffixes work here too)

Ok, let’s see how to use it in code:

struct cfg_a_str *el;
for(el = cfg->sounds; el; el = el->next) {
 printf("%s\n", el->val);
}

Now if we write following config:

sounds:
- croak
- ribbit

We can have a frog that can cry with both USA and UK slang :)

$./frog -c flog.yaml
croak
ribbit

You can also create nested arrays, and arrays of structures.

Mappings

We can also declare a mapping:

sounds: !Mapping
 key-element: !String
 value-element: !String

Here we declared mapping of string to string. Here is how it looks like in C
structure:

struct cfg_m_str_str {
 struct cfg_m_str_str *next;
 const char *key;
 int key_len;
 const char *val;
 int val_len;
};

struct cfg_main {
 qu_config_head head;
 struct cfg_m_str_str *sounds;
 struct cfg_m_str_str **sounds_tail;
 int sounds_len;
};

The structure is very similar to array’s one, but the element type is named
cfg_m_KEYTYPE_VALUETYPE.

Ok, let’s see how to use it in code:

struct cfg_a_str *el;
for(el = cfg->sounds; el; el = el->next) {
 printf("%s -- %s\n", el->key, el->val);
}

Now if we write following config:

sounds:
 gb: croak
 usa: ribbit

We can have a frog that can display both the slang and the text:

$./frog -c flog.yaml
gb -- croak
usa -- ribbit

Note

The mapping is represented by a linked list too. There is no hash table or
other mapping structures that makes access by key fast. There are few
reasons for this decision, the most imporant one is that most programs will
copy the mapping into their own hash table implementation anyway.

Warning

The order of the elements in the linked list is preserved. But this
shouldn’t be relied upon, as the YAML spec doesn’t guarantee that.
For example some tool may rewrite yaml file and get keys reordered.

The key-element can be any scalar type (string, int, float...).

The value-element can be any type supported by quire, including nested
arrays and mappings.

Custom Types

Developer Guide

Build Process

This section discusses how to run quire-gen and how to use quire as the
part of your applications, using different build systems.

Note

The ABI for the library is not stable so the recommended way of using
quire is by using it as git submodule of your application.

Raw Process

Whole configuration parser generation is based on single YAML [http://yaml.org] file.
By convention it’s called “config.yaml” and is put near the sources of the
project (e.g. “src/” folder).

If you have installed quire to system, to make parser generator run:

quire-gen –source config.yaml –c-header config.h –c-header config.c

Then you may use the files as normal C sources. But be careful to update them
when yaml file changes. If you add them as a part of build process you may need
the mark as “generated” or equal, so that build system would not error if they
are absent. See below for instructions for specific build systems. You do not
need to bundle original yaml file with distribution of your application.

This is it. See tutorial for examples of the yaml
itself and how to use it in your own code.

Using Make

To use make for configuration file generation you might write something
along the lines of:

config.h config.c: config.yaml
 quire-gen --source $^ --c-header config.h --c-source config.c

Using CMake and Git Submodule

If you are using cmake [http://cmake.org] for building your project, you are lucky, because the
developers of quire use cmake too. So the whole process is easy.

Let’s add submodule first:

git submodule add git@github.com:tailhook/quire quire

Now we should add the following to the CMakeLists.txt:

Assuming you have "exe_name" executable
Add "config.c" that's will be generated to list of sources
ADD_EXECUTABLE(exe_name
 main.c
 other.c
 config.c)
Builds quire itself
ADD_SUBDIRECTORY(quire)
Get's the full path of quire-gen executable just built
GET_TARGET_PROPERTY(QUIRE_GEN quire-gen LOCATION)
Adds target to build C files and headers
You may need to adjust source and/or directory
ADD_CUSTOM_COMMAND(
 OUTPUT config.h config.c
 COMMAND ${QUIRE_GEN}
 --source ${CMAKE_CURRENT_SOURCE_DIR}/config.yaml
 --c-header config.h
 --c-source config.c
 DEPENDS config.yaml quire-gen
)
Marks files as generated so make/cmake doesn't complain they are absent
SET_SOURCE_FILES_PROPERTIES(
 config.h config.c
 PROPERTIES GENERATED 1
)
Add include search path for the files that include "config.h"
SET_SOURCE_FILES_PROPERTIES(
 main.c other.c # These files need to be adjusted
 COMPILE_FLAGS "-I${CMAKE_CURRENT_BINARY_DIR}")
Add include search path for quire.h (overriding system one if exists)
INCLUDE_DIRECTORIES(BEFORE SYSTEM quire/include)
Add linkage, adjust "exe_name" to name of your executable
TARGET_LINK_LIBRARIES(exe_name quire)

Now just run cmake && make like you always do with cmake.

You also need to include folder quire to your source distributions, even
if they have C files generated. You also need to add instructions to run
git submodule update --init for building from git.

Variable Types

All variable declarations start with yaml tag (an string starting with
exclamation mark). Almost any type can be declared in it’s short form, as a
(tagged) scalar:

val1: !Int 0
val2: !String hello
val3: !Bool yes
val4: !Float 1.5
val5: !Type some_type

And any type can be written in equivalent long form as a mapping:

val1: !Int
 default: 0
val2: !String
 default: hello
val3: !Bool
 default: yes
val4: !Float
 default: 1.5
val5: !Type
 type: some_type

Using the latter form adds more features to the type definition. Next section
describes properties that can be used in any type, and following sections
describe each type in detail.

Common Properties

The following properties can be used for any type, given the it’s written in
it’s long form (in form of mapping). Here is a list (string is for the sake of
example, any type could be used):

val: !String
 description: This value is something that is set in config
 default: nothing-relevant
 example: something-cool
 only-command-line: no
 command-line:
 names: [-v, --val-set]
 group: Options
 metavar: STR
 descr: This option sets val

Let’s take a closer look.

val: !String
 description: This value is something that is set in config

The description is displayed in the output of --config-print and -PP
command-line options. It’s reformatted to the 80 characters in width, on
output. If set it’s also used in command-line option description (--help)
if not overriden in command-line section.

val: !String
 default: nothing-relevant

Set’s default value for the property. It should be the same type as the target
value.

val: !String
 example: something-cool

Set’s the example value for the configuration variable. It’s only output in
--config-print=example and may be any piece of yaml. However it’s
recommended to obey same structure as a target value, as it may be enforced in
the future. See description of --config-print for more information.

val: !String
 only-command-line: yes

This flag marks an option to be accepted from the command-line only. It is
neither parsed in yaml file, nor printed using --config-print, but
otherwise it is placed in the same place in configuration structure and
respect same rules. If there is no command-line (see below) for this
option, then a member of the structure is generated and default is set
anyway.

The command-line may be specified in several ways. The simplest is:

val: !String
 command-line: -v

This adds single command-line option. Several options can be used too, mostly
useful for having short and long options, but may be used for aliases too:

val: !String
 command-line: [-v, --val]

And full command-line specification is a mapping. Each property in a mapping
is described in detail below.

val1: !String
 command-line:
 name: -v
 names: [-v, --val]

Either name or names may be specified, for the single option and
multiple options respectively.

val1: !String
 command-line:
 group: Options

The group of the options in the --help. Doesn’t have any semantic meaning
just keeps list of options nice. By default all options are listed under group
Options.

val1: !String
 command-line:
 metavar: STR

The metavar that’s used in command-line description, e.g. --val STR. By
default reasonably good type-specific name is used.

val1: !String
 command-line:
 descr: This option sets val

The description used in --help. If not set, the description in the
option definition is used, if the latter is absent, some text similar to
Set "val" is used instead.

There are also type-specific command-line actions:

intval: !Int
 command-line-incr: --incr
 command-line-decr: --decr
boolval: !Bool
 command-line-enable: --enable
 command-line-disable: --disable

They all obey pattern command-line-ACTION. Every such option may be
specified by any ways that command-line can. However, they have the
following difference:

	they inherit group from the command-line if specified

	they often have metavar useless

	they don’t inherit description as it’s usually misleading

String Type

String is most primitive data type. It accepts any YAML scalar and stores it’s
value as const char * along with it’s length.

The simplest config:

val: !String

If you supply scalar, is stands for the default value:

val: !String default_value

Maximum specification for string is something like the following:

val: !String
 description: This value is something that is set in config
 default: default_value
 example: some example
 command-line:
 names: [-v, --val-set]
 group: Options
 metavar: STR
 descr: This option sets val

The fields in C structure look like the following:

const char *val;
int val_len;

Note that the string is both nul-terminated and has length in the structure.

Warning

Technically it’s possible that the string contain embedded nulls. In most
cases this fact may be ignored. But do not rely on val_len be the length
of the string after strdup or similar operation.

Integer Type

Unlike in C there is only one integer type in quire. And it’s represented by
long value in C.

The simplest config:

val: !Int

If you supply scalar, is stands for the default value:

val: !Int 10

The comprehensive specification for integer is something like the following:

val: !Int
 default: 1
 min: 0
 max: 10
 description: This value is something that is set in config
 example: 100
 command-line:
 names: [-v, --val-set]
 group: Options
 metavar: NUM
 descr: This option sets val
 command-line-incr:
 name: --incr
 group: Options
 descr: This option increments val
 command-line-decr:
 name: --decr
 group: Options
 descr: This option decrements val

The field in C structure look like the following:

long val;

The additinal keys represent minimum and maximum value for the integer:

val: !Int
 min: 0
 max: 10

Both values are inclusive. If user specifies bigger or smaller value either
in configuration file or on command-line, error is printed and configuration
rejected. If value overflows by using increments by command-line arguments
(see below), the value is simply adjusted to the maximum or minimum value as
appropriate.

The additional command-line actions:

command-line-incr: --incr
command-line-decr: --decr

May be used to increment the value in the configuration. They are applied
after parsing the configuration file, and set-style options (regardless of
the order of the command-line options). Mostly useful for log-level or similar
things. The value printed using --config-print option includes all
incr/decr arguments applied.

All integer values support parsing different bases (e.g.
0xA1 for hexadecimal 161) and units (e.g. 1M for one
million)

Boolean Type

The simplest boolean:

val: !Bool

If you supply scalar, is stands for the default value:

val: !Bool yes

The comprehensive specification for boolean is something like the following:

val: !Bool
 default: no
 description: This value is something that is set in config
 example: true
 command-line:
 names: [-v, --val-set]
 group: Options
 metavar: BOOL
 descr: This option sets val
 command-line-enable:
 name: --yes
 group: Options
 descr: This option sets val to true
 command-line-disable:
 name: --no
 group: Options
 descr: This option sets val to false

The field in C structure look like the following:

int val;

The value of val is always either 0 or 1 which stands for boolean
false and true respectively.

The additional command-line actions:

command-line-enable: --yes
command-line-disable: --no

May be used to enable/disable the value in the configuration. They are applied
after parsing the configuration file, and after set-style options. If
multiple enable/disable options used, the last one wins. The value printed
using --config-print option includes all enable/disable arguments applied.

The following values may be used as booleans, both on the command-line and in
configuration file. The values are case insensitive:

	False
	True

	false
	true

	no
	yes

	n
	y

	~
	

	empty string
	

Floating Point Type

The simplest config:

val: !Float

If you supply scalar, is stands for the default value:

val: !Float 1.5

The comprehensive specification for floating point is something like the
following:

val: !Float
 default: 1.5
 description: This value is something that is set in config
 example: 2.5
 command-line:
 names: [-v, --val-set]
 group: Options
 metavar: FLOAT
 descr: This option sets val

The field in C structure look like the following:

double val;

All floating point values support parsing decimal numbers, optionally followed
by e and a decimal exponent. Floating point values also support
units (e.g. 1M for one million). Note that fractional units
are not supported yet.

Array Type

The array type has no short form, and is always written as a mapping. The only
key required in the mapping is an element which denotes the type of item
in each array element.

arr: !Array
 element: !Int

Any quire type may be the element of the array. Including array itself. More
comprehensive example below:

arr: !Array
 description: Array of strings
 element: !String hello
 example: [hello, world]

Note

Command-line argument parsing is not supported neither for the array
itself nor for any child of it. This may be improved in future. But look
at variables, if you need some command-line customization.

The C structure for the array is a linked list:

struct cfg_a_str {
 struct cfg_a_str *next;
 const char *val;
 int val_len;
};

struct cfg_main {
 qu_config_head head;
 struct cfg_a_str *arr;
 struct cfg_a_str **arr_tail;
 int arr_len;
};

The example of array usage is given in tutorial.

Mapping Type

The mapping type has no short form, and is always written as a mapping. The
two properties required in the mapping are key-element and
value-element which denote the type of key and value for the mapping.

arr: !Mapping
 key-element: !Int
 value-element: !String

Any quire type may be the value element of the array. Including array itself.
A key may be any scalar type. More comprehensive example below:

map: !Mappings
 description: A mapping of string to structure
 key-element: !String
 value-element: !String
 example:
 apple: fruit
 carrot vegetable

Note

Command-line argument parsing is not supported neither for the
mapping itself nor for any child of it. This may be improved in future. But
look at variables, if you need some command-line
customization.

The C structure for the mapping is a linked list:

struct cfg_m_str_str {
 struct cfg_m_str_str *next;
 const char *key;
 int key_len;
 const char *val;
 int val_len;
};

struct cfg_main {
 qu_config_head head;
 struct cfg_m_str_str *map;
 struct cfg_m_str_str **map_tail;
 int map_len;
};

The example of mapping usage is given in tutorial.

Custom Type

Sometimes you want to reuse a part of the config in multiple places. You
can do this with yaml aliases. But it’s better to be done by declaring a
custom type. Here we will describe only how to refer to a custom type.
See custom types for a way to declare a type.

The simplest type reference is:

val: !Type type_name

As with most types, declaration may be expanded to a mapping:

val: !Type
 description: My Value
 type: type_name
 example: some data

Note

Neither command-line, nor default are supported for type reference
for now. But this is expected to be improved in future

Special Keys

Types

The __types__ defines the custom types that can be used in multiple
places inside the configuration. It can also be used to define recursive types.
Any type defined inside __types__ can be referred by
!Type name_of_the_type. See custom types for more info.

Conditionals

There is a common use case where you have several utilities sharing mostly
same config with some deviations. The most typical use case is a daemon
process and a command-line interface to it, with a different set of
command-line argumemnts. Here is how it looks like:

__if__:defined CLIENT:
 query: !String
 only-command-line: yes
 command-line: --query

When compiling utility you should define the CLIENT macro:

gcc ... -DCLIENT

And you will get additional command-line arguments for this binary. In code
it looks like:

struct cfg_main_t {
 int val1;
#if defined CLIENT
 const char *query;
 int query_len;
#endif /* defined CLIENT */
}

The rule is: if expression is evaluated to true, you get the configuration with
all the contents of conditional merged inside the mapping (i.e. conditional
replaced by <<:). In case expression is evaluated to false, you should get
the all the configuration structures and semantics as the key and all its
contents doesn’t exist at all.

You can use any expression that C preprocessor is able to evaluate instead of
defined CLIENT

Warning

You must define the macro consistently across all C files that use
configuration header (config.h). In particular you can’t share
config.o generated for the two executables having different definitions.
CMake handles this case automatically but some other build systems don’t.

Include

There is __include__ special key, which allows to add #include
directive to the generated configuration file header. This key can be present
at any place and will add the preprocessor directive at the top of the file.

For example:

__include__: "types.h"

Will result into the following line in the config.h file:

#include "types.h"

Note

There is no way to include a system header (#include <filename>),
you can include some intermediate file, which includes the system header, if
you really need the functionality. But most of the time double-quoted name
will be searched for in system folders if not found in the project itself.

Set Flags

The flag __set_flags__ can be used to generate xx_set field for each
of the structure field. This flag may be used to find out whether field is set
by user or the default value is provided. For example:

data:
 ? __set_flags__
 a: !Int 1
 b: !Int 2

Note

The syntax ? __set_flags__ is YAML shortcut to
__set_flags__: null. We use and recommend this syntax for structure
flags as it’s not only shorter, but also stand out from structure field
definitions.

Will turn into the following structure:

struct cfg_main {
 qu_config_head head;
 struct {
 unsigned int a_set:1;
 unsigned int b_set:1;
 long a;
 long b;
 } data;
};

Note

The syntax int yy:1; is a syntax for bit field. I.e. the field
that is only one bit in width. Given it is unsigned it can have
one of the two values 0 and 1.

The values of a and b fields will always be intitialized (to 1 and 2
respectively), but the a_set and b_set will be non-zero only when
user specified them in configuration file.

The __set_flags__ property can be specified in any structure, including the
root structure and !Struct custom type or its descendent. The flag is
propagated to the nested structures but not to the !Type fields.

Structure Name

Usually nested mappings that do not denoted by !Type are represented by
anonymous structures. But you can set __name__ for the structure to have
a name.

data:
 __name__: data
 a: !Int 1
 b: !Int 2

Will name the internal structure:

struct cfg_main {
 qu_config_head head;
 struct cfg_data {
 unsigned int a_set:1;
 unsigned int b_set:1;
 long a;
 long b;
 } data;
};

This is occasionally useful to use the structures in code.

Note

Author of config is responsible to set unique name of the structure
otherwise the C compiler will throw an error.

Custom Types

Structure Type

Choice Type

Enumeration Type

Tagged Scalar Type

Field Type

Field type allows to wrap any other type into yet another C structure.
It is sometimes useful, especially with non-scalar types. For example:

__types__:
 string_list: !Field
 field: !Array
 element: !String

Results into the following C definitions:

struct cfg_string_list {
 struct cfg_a_str *val;
 struct cfg_a_str **val_tail;
 int val_len;
};
struct cfg_main {
 qu_config_head head;
 struct cfg_string_list arr1;
};

C Fields

Warning

The functionality described in this section is currently discouraged and is
subject to removing/adjusting at any time.

Ocasionally there is a need to put custom C field into generated structure.
You can do that with the following syntax:

_field-name: !CDecl struct some_c_struct

Where _field-name may be arbitrary but must start with underscore. And at
the right of the !CDecl may be any C type that compiler is able to
understand. It’s written as is, so may potentially produce broken header if
some garbage is written instead of the type name.

If you need to add some header for type to be known to the compiler use
__include__ special key:

__include__: "types.h"
_field-name: !CDecl struct some_c_struct

Note all files are added with #include "filename" syntax, not the
#include <filename>.

User Guide

Yaml Cheat Sheet

Usually YAML structure is denoted by indentation.

Quire Tricks

Underscore Names

Integers

Integers can be of base 10, just like everybody used to. It can also start
with 0x to be interpreted as base 16, and if it starts with zero it is
interpreted as an octal number.

Units

A lot of integer values in configuration files are quite big, e.g. should be
expressed in megabytes or gigabytes. Instead of common case of making default
units of megabytes or any other arbitrary choice, quire allows to specify
order of magnitude units for every integer and floating point value. E.g:

int1: 1M
int2: 2k
int3: 2ki

Results into the following, after parsing:

int1: 1000000
int2: 2000
int3: 2048

Note that there is a difference between prefixes for powers of 1024 and powers
of the 1000.

The following table summarizes all units supported:

	Unit
	Value

	k
	1000

	ki
	1024

	M
	1000000

	Mi
	1048576

	G
	1000000000

	Gi
	1073741824

	T
	1000000000000

	Ti
	1099511627776

	P
	1000000000000000

	Pi
	1125899906842624

	E
	1000000000000000000

	Ei
	1152921504606846976

Variables

YAML has a notion of anchors. You can anchor the node with ampersand &,
and then alias it’s value with star *. Here is an example:

var1: & some_value
var2: *amp

When encountering the code above, the parser sees:

var1: some_value
var2: some_value

It’s very powerful and very useful thing. You can even anchor entire hierarchy:

map1: &a
 key1: value1
 key2: value2
map2: *a

Yields:

map1:
 key1: value1
 key2: value2
map2:
 key1: value1
 key2: value2

This is powerful for keeping yourself from writing too much code. But it only
allows to substitute the whole yaml node. So there is more powerful scalar
expansion:

var1: &var some_value
var2: $var

Note we replaced the aliasing using star * with dollar sign $. This
doesn’t look more powerful. But now we can override the value from the command
line:

./myprog -Dvar=another_value

Which yields:

var1: some_value
var2: another_value

You can also substitute a part of the string:

_target: &target world
var1: hello $target

Let’s play with it a bit:

$./myprog -f test.yaml -P
var1: hello world
$./myprog -f test.yaml -Dtarget=foo -P
var1: hello foo

There are two things interesting above:

	Anchors and scalar variables are somewhat interchangable

	Command-line variables override anchors. So latter may be used as default
values

Note using underscored names for declaring variables. It’s described in
quire tricks.

There is even more powerful form of variable expansion:

_n: &n 100
int1: ${2*n}k

This leverages several features. Let’s see the result:

int1: 200000

Few comments:

	The ${...} expands an expression not just single variable

	The variable is referenced without dollar $ inside the expression

	The result of substitution is parsed using same rules as plain scalar, so
may use units as well.

Note

You can’t use variables when declaring mapping key. The only case
where you can is inside a Template.

Templates

Even more powerful construction in a combination with variables is a template.
Template is basically an anchored node which has some variable references, and
may be used with different variable values in different contexts. For example:

_tpl: &price !NoVars
 chair: $x dollars
 table: ${x*4} dollars

shops:
 cheap: !Template:price
 x: 50
 expensive: !Template:price
 x: 150

The example above will be expanded as the following:

shops:
 cheap:
 chair: 50 dollars
 table: 200 dollars
 expensive:
 chair: 150 dollars
 table: 600 dollars

The templates may be arbitrarily complex. There are few limitations:

	Template-scoped variables may only be scalar

	The anchored node is expanded too, you may either use !NoVars like in
example, or define all the variables to get rid of warnings of
Undefined variable

	Variables in tags are not supported

Note, the limitation #1, doesn’t limit you to use anchor or templates inside
a template (the anchored node), just the scoped variables inside the template
invocation (the items of a mapping tagged !Template) must be scalar. And
anchors are never scoped.

Note

The variable expansion in mapping keys work only for template, but
doesn’t work in all other cases.

Includes

All includes have common structure. They are denoted by tagged scalar, with the
special tag. With the scalar being the path/filename to include. After parsing
the yaml but before converting the data into configuration file structure, the
node is replaced by the actual contents of the file(s).

Few more properties that are common for all include directives:

	All paths are relative to the configuration file name which contains the
include directive (in fact relative to the name under which file is opened
in case it symlinked into multiple places)

	Include directives can be arbirarily nested (up to the memory limit)

	File inclusion is logical not textual, so (a) each file must be a full valid
YAML file (with the anchors exception described below), and (b) the included
data is contained at the place where directive is (unlike many other
configuration systems where inclusion usually occurs at the top level of the
config), but you can include at the top level of the config too

	Variable references are not parsed in include file names yet, but it’s on
todo list, so do not rely on include paths that contain dollar signs

	There is a common namespace for anchors and variables between parent and
include files, but this behavior may be changed in future

Include Raw File Data

The !FromFile tag includes the contents of the file as a scalar value.
For example if somefile.txt has the following contents:

line1
: line2

The following yaml:

text: !FromFile "somefile.txt"

Is equivalent to:

text: "line1\n: line2"

The context of the file is not parsed. And it’s the only way to include binary
data in configuration at the moment.

Include Yaml

The !Include tag includes the contents of the file replaceing the
node that contains tag. For example:

config.yaml
items: !Include items.yaml

items.yaml
- apple
- cherry
- banana

Is equivalent of:

items:
- apple
- cherry
- banana

Include Sequence of Yamls

The !GlobSeq tag includes the files matching a glob-like pattern, so that
each file represents an entry in the sequence. Each included file is a valid
YAML file.

The pattern is not full glob pattern (yet). It may contain only a single star
and an arbitrary prefix and suffix.

For example:

config.yaml
items: !GlobSeq fruits/*.yaml

fruits/apple.yaml
name: apple
price: 1

fruits/pear.yaml
name: pear
price: 2

Is equivalent of:

items:
- name: apple
 price: 1
- name: pear
 price: 2

Note

The entries are unsorted, so you should not use the !GlobSeq in
places sensitive to positions for items. You should use plain sequence
with !Include for each item instead

This construction is particularly powerful with merge key
<<. For example:

config.yaml
<<: !GlobSeq config/*.yaml

config/basics.yaml
firstname: John
lastname: Smith

config/location.yaml
country: UK
city: London

Is equivalent of:

firstname: John
lastname: Smith
country: UK
city: London

Multiple sets of files might be concatenated using
unpack operator.

Include Mapping From Set of Files

The !GlobMap tag includes the files matching a glob-like pattern, so that
each file represents an entry in the mapping. The key in the mapping is
extracted from the part of the filename that is enclosed in parenthesis. Each
included file is a valid YAML file.

The pattern is not full glob pattern (yet). It may contain only a single star
and an arbitrary prefix and suffix. It must contain parenthesis and the star
character must be between the parenthesis.

config.yaml
items: !GlobSeq fruits/(*).yaml

fruits/apple.yaml
title: Russian Apples
price: 1

fruits/pear.yaml
title: Sweet Pears
price: 2

Is equivalent of:

items:
 apple:
 title: Russian Apples
 price: 1
 pear:
 title: Sweet Pears
 price: 2

You can also merge mappings from the multiple directories and do other crazy
things using merge operator <<.

Merging Mappings

We use standard YAML way for merging [http://yaml.org/type/merge.html] mappings. It’s achieved using << key
and either mapping or a list of mappings for the value.

The most useful merging is with aliases. Example:

fruits: &fruits
 apple: yes
 banana: yes
food:
 bread: yes
 milk: yes
 <<: *fruits

Will be parsed as:

fruits:
 apple: yes
 banana: yes
food:
 bread: yes
 milk: yes
 apple: yes
 banana: yes

Merging Sequences

Index

 nav.xhtml

 Table of Contents

 		Welcome to Quire's documentation!

 		Quire Tutorial

 		Minimal Config

 		Adding Useful Stuff

 		Nested Structures

 		Command-line Arguments

 		Arrays

 		Mappings

 		Custom Types

 		Developer Guide

 		Build Process

 		Raw Process

 		Using Make

 		Using CMake and Git Submodule

 		Variable Types

 		Common Properties

 		String Type

 		Integer Type

 		Boolean Type

 		Floating Point Type

 		Array Type

 		Mapping Type

 		Custom Type

 		Special Keys

 		Types

 		Conditionals

 		Include

 		Set Flags

 		Structure Name

 		Custom Types

 		Structure Type

 		Choice Type

 		Enumeration Type

 		Tagged Scalar Type

 		Field Type

 		C Fields

 		User Guide

 		Yaml Cheat Sheet

 		Quire Tricks

 		Underscore Names

 		Integers

 		Units

 		Variables

 		Templates

 		Includes

 		Include Raw File Data

 		Include Yaml

 		Include Sequence of Yamls

 		Include Mapping From Set of Files

 		Merging Mappings

 		Merging Sequences

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

